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Abstract. The dynamics for a model system of an isolated infinite step in a surface are
presented. The model is simple, treating the monatomic step as the interface between two
coupled semi-infinite and single semi-infinite atomic layers. The breakdown of translational
symmetry perpendicular to the step edge gives rise to several Rayleigh-like branches localized
in the neighbourhood of the step. It is seen that a step may lift the polarization degeneracy of the
ordered surface Rayleigh mode along the atomic rows parallel to and in the neighbourhood of
the step edge. Typical dispersion curves for these modes along the step edge are given with their
polarizations. The vibrational Green functions are calculated for the system, and the spectral
densities are presented numerically for atomic sites that constitute a minimum representative set
in the neighbourhood of the step. A hyperfine resonance structure is obtained that permits the
analysis of the evolution of the dynamics from one half-space to the other.

1. Introduction

There has been increasing interest during the last decade in the theoretical and experimental
study of the dynamics of disordered surfaces [1–9]. The presence of nanostructures such as
random steps, kinks and other defects on crystal surfaces is important to their equilibrium
topography as well as to a number of other surface properties.

This interest has also been motivated by the increasing need to refine the knowledge of
substrate surfaces, and to acquire insight into their electronic and mechanical properties
with a view to high-technology applications. For example, questions concerning the
thermodynamic stability of vicinal surfaces [10–15] and the modes of their kinetic growth
are becoming important and necessitate a better understanding of the role of disorder.

The study of dynamic phenomena at disordered surfaces by completelyab-initio
techniques is still a difficult exercise, owing to the complexity of the phenomena, even
though some empirical many-body potentials are available [16], and can lead to refinements
in the numerical values attributed to force constants in the neighbourhood of surface defects,
and to the relaxed positions of the atoms in vicinal surfaces.

Recently the problem of the dynamics of surface steps is being increasingly addressed.
In one study [9], a local theoretical analysis of the dynamics of the step edge in a relaxed and
reconstructed Ag(511) is given; in another [17], surface phonon dispersion curves of vicinal
Cu(211) and Cu(511) have been measured, and the experimental data have been interpreted
in terms of theoretical slab calculations in the framework of a single-force-constant model.
In a more recent paper [18], the surface Rayleigh waves at a vicinal Ni(977) surface are
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obtained in the long-wavelength limit using perturbation analysis and elasticity theory. The
vicinal surfaces are treated in these studies as periodically stepped in the direction normal
to the steps, and the calculations are carried out with corresponding boundary conditions, so
that the model is effectively one dimensional in the direction normal to the average surface.

The case of an isolated step, to our knowledge, has not been treated yet. In this paper
we do not study the full problem arising from the absence of translational symmetry in two
directions due to a surface step. We present a precursor model system with the intention of
studying the dynamics of an isolated surface step. Physically this system is representative
of the case where the random distance between steps, e.g. in a vicinal surface, is greater
than the coherence length of a surface phonon. Our model, a simple one based on two
coupled semi-infinite atomic layers interfacing with a single semi-infinite atomic layer, as
shown in figure 1, is one dimensional, but in this case the distinctive feature is a direction
normal to the step edge rather than to the average surface.

Figure 1. A schematic representation of an isolated infinite step, modelled as the interface
between the two coupled and single atomic layers, in two separate half-spaces.

Low-dimensional models have long been of theoretical interest as systems which
can yield useful information with well defined mathematical properties [19]. There is
also renewed in these systems from another viewpoint, namely because of the need to
understand the influence of local defects on the DC transport in mesoscopic quantum wires
of finite widths. Although this is different with respect to the present considerations of
lattice synamics, dealing instead with the electronic properties, nevertheless the underlying
mathematical analysis is comparable [20].

Strictly the isolated infinite step in a surface is a system for which the translational
symmetry is missing in two directions, perpendicular to the surface and the step edge. In
our model the bulk is ignored and emphasis is put on the direction normal to the step edge.
In section 2 we describe the theoretical model, and in section 3 the calculation of the phonon
dispersion curves for the Rayleigh-like branches along the isolated step edge are given for a
case study. In section 4 the real-space Green functions that describe the step edge dynamics
are derived, and the spectral densities are obtained. The discussion and conclusions are
presented in section 5.

2. The model of an isolated step edge and its evanescent dynamics

Our structural model is based on two coupled semi-infinite atomic layers interfacing with
a single semi-infinite atomic layer, as shown in figure 1, with nearest- and next-nearest-
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neighbour interactions, lettingr denote their ratio in both semi-infinite parts of the system.
Moreover, we allow for a modification of the strain field in the step region, the parameterλ

denoting the ratio of these modified force constants to the constants of the system outside
the step region. This region is defined as the grey area in figure 1.

A number of methods exist to study phonons and resonances in surfaces, [21–24]. The
matching method which we employ in this paper [23] is one of them. It applies to the
analysis of the dynamics of ordered surfaces by stipulating that localized surface modes
should match the evanescent dynamics of the crystal bulk along the direction normal and
away from the surface. This method has previously been extended to study low-dimensional
models for phonon scattering by isolated defects [25]. The matching method allows us to
deal with both aspects of localized modes and scattering of phonons at defects, within the
same mathematical framework.

The equation of motion of an atom at sitel is given as usual in the harmonic
approximation [21] by

ω2m(l)uα(l, ω) = −
∑
l′ 6=l

∑
β

K(l, l′)
rαrβ

d2
(uβ(l, ω) − uβ(l′, ω)) (1)

for (α, β) ∈ {x, y, z}, where m ≡ m(l) is the atomic mass for sitesl, uα(l, ω) is the
displacement field along theα direction,rα is the corresponding cartesian component of the
radius vector betweenl and l′, d is the distance betweenl and l′, andK(l, l′) is the force
constant betweenl and l′. In this representation thex and y axes are taken normal and
parallel, respectively, to the infinite step edge in figure 1. Thez axis, not to be confused
with the phase factors introduced later, is normal to the plane of thex andy axes.

The evanesence vibrational field in the two coupled and in the single atomic layers,
away from the step region, is described by the phase factor doublets(z(i), z(i)−1) and
(z(j)′, z(j)′−1), respectively, going from one site to its nearest neighbours or vice versa
along the direction normal to the step edge. Herei(j) label the solutions in the infinite
double (single) layers. The evanescence field, determined by the conditions|z(i)| < 1 and
|z(j)′| < 1, is given by the evanscent solutions of the equations of motion.

Using equation (1), the atomic motion on a site(nx, ny) outside the step region, in the
single atomic layer, can be expressed as

[�2I − N(ϕy, z
′, r, λ)]|u′〉 = |0〉 (2)

where the dimensionless frequency� is given by �2 = mω2/K(l, l′), l and l′ are the
sites of the nearest neighbours, andϕ = ak, k being the one-dimensional reciprocal-lattice
wavevector in the direction parallel to the step edge.

A similar set of equations is obtained for the two coupled atomic layers for the sites
(nx, ny, nz) and(nx, ny, nz−1):

[�2I − M(ϕy, z, r, λ)]|u〉 = |0〉. (3)

The detailed expressions for the dynamical matrices as functions ofϕy, r, λ and z(z′) are
given in the appendix.

For these dynamical matrices in equations (2) and (3), a non-trivial solution requires
that the determinants det[�2I − N(ϕy, z

′, r, λ)] and det[�2I − M(ϕy, z, r, λ)] vanish. This
gives rise to two characteristic secular equations of degrees 12 inz and four inz′, which
may be expressed in the polynomial form

A0 + A1z + A2z
2 + A3z

3 + A4z
4 + A5z

5 + A6z
6 + A7z

7 + A8z
8 + A9z

9 + A10z
10

+A11z
11 + A12z

12 = 0 (4)

A′
0 + A′

1z
′ + A′

2z
′2 + A′

3z
′3 + A′

4z
′4 = 0 (5)
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where the coefficientsAn andA′
n are functions of�, ϕy , r andλ. We can show that both

phase factorsz andz−1, as well asz′ andz′−1, verify symmetrically the polynomials, owing
to the Hermitian nature of the bulk dynamics. To satisfy the evanescent conditions|z| < 1
and|z′| < 1, we select, however, only six physically acceptable solutions forz, and two for
z′, from the roots of equations (4) and (5). Together these solutions constitute in the space
{�, ϕy} the set of evanescent modes{z(i), z′(j)}, i ∈ {1, 2, 3, 4, 5, 6} and j ∈ {1, 2}. The
evanescence field is then rigorously determined in the two semi-infinite parts of the model
system.

Figure 2. The localized Rayleigh step dispersion branches A, B and C as functions of the
wavevectorϕy in the direction of high symmetry for the system along they axis. D–D and E–E
denote the bulk phonon band limits for the single layer, and for the coupled two atomic layers,
respectively.
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Figure 3. The arrows illustrate amplitudes or polarizations for the three localized Rayleigh step
modes of figure 2, for a representative wavevectorϕy = 3

4π .

3. Rayleigh modes on a model isolated step edge

The Cartesian componentsα of the displacements field for an atom outside the step domain,
i.e. outside the grey area of figure 1, can be expressed [7, 23], as

u′
α(nxny) =

2∑
j=1

[z′(j)]nx R+
j p′(α, j) (6)

for an atomic site in the single atomic layer, and as

uα(nxnynz) =
6∑

i=1

[z(i)]−nx R−
i p(α, i) (7)

for an atomic site in the two coupled atomic layers.R+
j andR−

i are unit vectors spanning
the space of the solutions corresponding to the set{z(i), z′(j)}. The coefficientsp(α, i)

and p′(α, j), identify the relative weighting factors associated with the different atomic
displacementsuα andu′

α [7,21].
Denoting by|R〉 the basis vector in the constructed space, and by|U〉 that composed by

a choice of a set of irreducible sites in the step region plus a minimum representative set of
sites in the matching regions in the two semi-infinite domains of the system, the equations
of motion for the step as an infinite defect can rewritten in terms of|U〉.

The necessary minimum set of sites defining the vector|U〉 is indicated in figure 1 by
the letter (a), (b), (c), (d), (e) and (f). Taking (d) as the origin, their coordinates are as
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Figure 4. Phonon spectral densities in the direction of thex axis normal to the step edge, for
all the atoms (a), (b), (c), (d), (e) and (f) in the minimum representative set of sites contained
in the grey area of figure 1.

follows:

(a) (−1, 0, +1) (b) (−1, 0, 0) (c) (0, 0, +1)

(d) (0, 0, 0) (e) (+1, 0, 0) (f) (+2, 0, 0)

Using equations (3), (6) and (7), and the transformations connecting the two vectors|R〉
and |U〉 of interest, we obtain a square linear homogeneous system of equations

[�2I − D(ϕy, r, λ, z(i), z′(j))]|U〉 = |0〉 (8)

i ∈ {1, 2, 3, 4, 5, 6}, j ∈ {1, 2}. Note that all sites in the step region have three degrees
of freedom for their atomic displacements, since we allow for next-nearest-neighbour
interactions between the(nx, ny, nz) sites on the step edge of the two coupled atomic layers
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Figure 5. Phonon spectral density in the direction of they axis parallel to the step edge for all
the atoms (a), (b), (c), (d), (e) and (f) in the minimum representative set of sites contained in
the grey area of figure 1.

with the sites(nx, ny) of the single atomic layer, in this region. The size of the vector
|U〉 and the dimensions of equation (8) depend as a consequence directly on the necessary
minimum set of atomic sites indicated above. A non-trivial solution yields the energies of
the localized vibrational modes on the step, as a function of the system parameters.

To apply the model, numerical calculations may be obtained for a variety of values; we
present here the case wherer = 0.05, considering that next-nearest-neighbour interactions
are much weaker than the nearest-neighbour interactions, andλ = 0.6 to illustrate the
softening of the force constants in the step region [27]. These values are reasonable in a
condensed-matter context.

Solving numerically the systems of equations (4) and (5) for itinerant solutions gives
the phonon bulk band limits for the single atomic layer denoted by curves D, and those
for the two coupled atomic layers denoted by curves E, respectively, in figure 2. We note
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Figure 6. Phonon spectral density in the direction of thez axis normal to the system for all the
atoms (a), (b), (c), (d) and (e) in the minimum representative set of sites contained in the grey
area of figure 1.

the presence of a small and thin window in the bulk region which becomes larger when
r increases. Note that the E–E band is similar to the projection of bulk phonon bands for
an FCC crystal on a Miller low-index surface. This similitude may be made more striking
still by adjusting appropriately the value ofr. In figure 2, curves A, B and C represent
the dispersion curves of the phonon modes localized on the isolated infinite step edge,
illustrating how the breakdown of translational symmetry owing to the presence of a step
may induce several new Rayleigh-like branches along a step edge in a surface. This is
seemingly in qualitative agreement with the theoretical results of [18], although a detailed
comparison shows that the natures of the modes are not the same in the two studies. In the
cited work, Mele and Pykhtin label two of the branches as primary and secondary Rayleigh
modes, the secondary being a back-folded excitation owing to the model periodicity of the
Ni(977) vicinal surface. In our case there is no such folding; rather the A, B, and C Rayleigh
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branches arise because the step lifts in real space the polarization degeneracy of an ordered
surface Rayleigh mode along the atomic rows parallel to and in the neighbourhood of the
step edge. Furthermore, our third mode B bears no resemblance to the third mode in [18]
which is again due to Brillain zone folding. Note that the dispersion relations of modes A
and B are not degenerate in the region 1.4 < ϕy < 2.1.

The polarizations of mode B are such that the displacements on a couplet of sites, one
above the other in the two layers, are symmetric. In contrast the polarizations of modes A
and C are such that the displacements on an equivalent couplet of sites are antisymmetric.
This is a confinement effect due to the finite extension of the two semi-infinite layers along
the z axis.

Figure 3 shows by the use of arrows the relative amplitudes or polarizations on the
sites, for an exemplifying wavevectorϕy fixed at 3π/4. The first Rayleigh mode A is
antisymmetric and characterized by amplitudes purely along thez axis, attaining a maximum
on the site (e) off the step edge in the single-layer half-space. The second Rayleigh mode B is
symmetric and characterized by amplitudes along thex andz axes, attaining a maximum on
the sites couplet (a)–(b) off the step edge in the two-layer half-space. For the antisymmetric
Rayleigh mode C the amplitudes are purely along thez axis; the maximum amplitude is
for the sites (c) and (d) which are strictly on the step edge. Although not explicitly shown
with additional arrows in figure 3, the amplitudes decrease exponentially as we move away
from the step region in either sense along the direction normal to the step edge, in accord
with the evanescence dynamics of the system.

4. The spectral densities of phonons on a model isolated step edge

The most direct manner to calculate the spectral densities is via the Green functions. It is
possible for us to express the Green operator using the matching method [28], as

G(ϕy, �
2 + iε) = [(�2 + iε)I − D(ϕy, r, λ, {z}, {z′})]−1. (9)

The phonon spectral density matrix, for a given wavevector parallel to the step edge, is then
given by the following relation:

ρ
(l,l′)
(α,β)(ϕy, �) = 2�

∑
m

P l
αmP l′∗

βmδ(�2 − �2
m) (10)

wherel andl′ represent two different atoms,α andβ are two different Cartesian directions,
and P l

αm is the α component of the polarization vector on the atom atl for the mode of
frequency�m. The density of states can also be expressed as

N(�) =
∑
ϕy

∑
lα

ρ
(l,l)
(α,α)(ϕy, �) = −2�

π

∑
ϕy

∑
lα

lim
ε→0+

{Im[Gll
αβ(ϕy, �

2 + iε)]} (11)

summing over the trace of the matrix.
As shown in figures 4–6, we have calculated for each of the atomic sites (a), (b), (c),

(d), (e) and (f) their phonon spectral densities along the Cartesian axes. For completeness
we also plot in figures 7–9, the densities of states per site in the frequency range of interest.

5. Discussion and conclusions

Figure 4 gives the spectral densities along thex axis for the above atoms. Six resonance
peaks are observed for all curves, in the range of� between 0.5 and 2. As can be seen
in figure 2, this range which corresponds to the D–D frequency domain of the phonon
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Figure 7. The density of states for the two sites (a) and (b) belonging to the two-atomic-layer
half-space.

bulk band in the semi-infinite single atomic layer is contained in the E–E domain. This
explains why all the sites, including those in the semi-infinite coupled atomic layers, have
such resonances as well. The same phonons excite resonance simultaneously in both semi-
infinite parts along thex axis normal to the step edge. There is no evidence for resonance
outside the D–D domain which is to be expected. The site couplet (a)–(b), one atom above
the other, has a highly analogous spectral structure; this is also true for the site couplet
(c)–(d), as well as for (e) and (f) next to each other in the single layer. The corresponding
spectra are not identical owing to the absence of symmetry for the overall system.

Figure 5 gives the spectral densities for these atoms along they axis parallel to the
step edge. In this direction of high symmetry for the system, there are several resonance
peaks at frequencies other than those for thex-axis resonances. However, a similar couplet
behaviour is observed for (a)–(b), and for (c)–(d) sites. The (e) atom has a double resonance
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Figure 8. The density of states for the two sites (c) and (d) belonging to the two-atomic layer
half-space, and for the (d) site interfacing with the single layer.

at � ' 0.85 whereas the (f) atom does not along thez axis, although both have similar
densities along thex axis. In the calculation the (e) site is allowed to have three degrees of
liberty owing to its supposed next-nearest-neighbour interaction with the (c) site of the step
edge. At� ' 0.85 the (a), (b), (c) and (d) atoms on the double plane also have resonances,
albeit small. It seems probable that (e) has a greater liberty along they axis compared with
these other sites, although the resonance at� ' 0.85 follows from an interaction along the
z axis.

The spectral densities along thez axis are shown in figure 6. The sites of the couplet (a)–
(b) have identical spectral densities, with four overlapping peaks. The two high-frequency
peaks can be attributed to bulk resonances. The two low-frequency peaks, in contrast, are
due to the excitation by the localized Rayleigh like modes along the step edge, as can be
seen with reference to figures 2 and 3. We observe a similar behaviour for the site couplet
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Figure 9. The density of states for the two sites (e) and (f) belonging to the single-atomic-layer
half-space.

(c)–(d); in this case, however, it is difficult to say whether the exciting modes come from
the bulk of the single or double atomic layers. Finally the resonances on site (e) are again
determined by its extra degree of freedom along thez axis; it is hence evident that this
resonance is associated with the excitation of the localized Rayleigh-like modes travelling
along the step edge, given the ranges of their frequencies and polarizations. The site (f) has
only two degrees of freedom along thex and y axes, has no renonances along thez axis
and is not presented in figure 6.

For completeness we plot in figures 7–9, the densities of states per atomic site, in the
frequency interval of interest, for the sites considered. for the couplets (a)–(b) and (c)–(d),
these densities are quite similar, as may be expected. They are not identical owing to the
absence of symmetry along thez axis for the overall system. The densities of state for
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the (e) and (f) sites are similar over the high-frequency range in the phonon bulk band of
the single atomic layer, but quite different in the range of low frequencies typical of the
step localized modes A, B and C. At low frequencies the (e) site registers a remarkable
contribution from these modes.

It is interesting to compare our results with previous ones, notably with those in reference
[27], which are sufficiently systematic to be useful for our purpose. However, one should
be careful in this exercise for a number of reasons. First of all the system studied by Tian
et al is an FCC slab which presents an ordered(1, 1, n) stepped surface whereas ours is a
simple cubic thin slab with an isolated step. To make any sense of this we compare our
results with those for a high index(1, 1, n) namely the(1, 1, 13) on which the ordered steps
are nevertheless far apart, and for which these authors provide systematic results. Ideally
we should have results in their work for an infiniten, for a realistic comparison with our
isolated step. We compare the spectral densities for sites which are most comparable in the
two works, namely sites c here with their S, e here with their T, and d here with their C.

Concerning the (c, S) sites our results for the c site show clearly identifiable peaks
compared to those for the S site. Nevertheless the dominant peak in the two spectra has
a similar behaviour, with peak positions following the sequence�(x) < �(y) < �(z).
Considering the (e, T) sites, the e site presents the same doublet as the T site in [27], with
approximately the same doubling of the frequency for thex andy polarizations. However,
the spectral density forz shows a difference between the two model treatments. The spectral
density of e alongz in our work, as pointed out earlier, is closely associated to the localized
Rayleigh like modes along the step edge. Since the model surface(1, 1, 13) is an ordered
arrangement of steps these modes may be absent or submerged for the T site, in any case
we find no discussion concerning these modes in the work of Tianet al. As regards the
(d, C) sites, four modes are apparent in both treatments forx, although it is difficult to make
a realistic comparison. For they polarization the same continuum appears in both model
treatments leading up to a high frequency sharp peak for both d and C sites. Forz this
peak persists in our results but is absent in [27]. The qualitative similarities are interesting
to point out despite the important structural and model differences: thin versus thick slab
models, an isolated step versus an ordered(1, 1, 13) stepped surface, cubic versus FCC
structures, force constants versus embedded atom potential.

In our work the fine structure of the spectra and its origins are now clearly identifiable,
which situation yields a new insight for this problem. In addition the existence and nature
of the localized Rayleigh like modes associated to an isolated surface step are derived,
and further the importance of the contributions of these modes to the spectral densities are
highlighted for the first time, despite the apparent model simplicity.

The dynamics for a simple model system of an isolated infinite step in a surface are
presented. It is seen that the breakdown of translational symmetry normal to the step edge
may give rise to several vibrational modes that are Rayleigh-like branches localized in the
neighbourhood of the step. Typical dispersion curves for these along the step edge ar given
with their polarizations, and it is concluded that the step lifts the real-space polarization
degeneracy of an ordered surface Rayleigh mode along the atomic rows parallel to and
in the neighbourhood of the step edge. The vibrational real-space Green functions are
calculated, and typical spectral densities are presented numerically for atomic sites in the
neighbourhood of the step. A hyperfine resonance structure is thus obtained that permits
the analysis of the evolution of the dynamics from one half-space to the other.
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Appendix

The equations of atomic motion on the site(nx, ny) in the bulk of the monatomic layer can
be expressed by

[�2I − N(ϕy, z, r)]|u′〉 = |0〉 (A1)

with

|u′〉 =
[

U ′
x (nx, ny)

U ′
y (nx, ny)

]
(A2)

and

[N ] =
[

N(1) N(3)

N(3) N(2)

]
(A3)

where
N(1) = �2 + (z′ + z′−1)(1 + r cosϕy) − 2r − 2

N(2) = �2 + cosϕy (2 + r(z′ + x ′−1)) − 2r − 2

N(3) = ir sinϕy(z
′ − z′−1).

(A4)

The equations of atomic motion on the sites(nx, ny, nz) in the bulk of the two coupled
atomic layers can also be expressed in a resumed form as

[�2I − M(ϕy, z, r)]|u〉 = |0〉 (A5)

with

|u〉 =


Ux (nx, ny, nz)

Uy (nx, ny, nz)

Uz (nx, ny, nz)

Ux (nx, ny, nz−1)

Uy (nx, ny, nz−1)

Uz (nx, ny, nz−1)

 (A6)

and

[M] =


M(1) M(4) 0 M(5) 0 M(6)

M(4) M(2) 0 0 M(7) M(8)

0 0 M(3) M(6) M(8) M(9)

M(5) 0 −M(6) M(1) M(4) 0
0 M(7) −M(8) M(4) M(2) 0

−M(6) −M(8) M(9) 0 0 M(3)

 (A7)

where
M(1) = −(z + z−1)(1 + r cosϕy) + 2 + 3r

M(2) = − cosϕy (2 + r(z + z−1)) + 2 + 3r

M(3) = 2r + 1

M(4) = i(z − z−1)r sinϕy

M(5) = r

2
(z + z−1)

M(6) = − r

2
(z − z−1)

M(7) = r cosϕy

M(8) = −ir sinϕy

M(9) = r

2
(z + z−1 + 2 cosϕy) + 1

(A8)
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